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1. Affine Algebraic Sets

1.1. Algebraic Preliminaries

In this course, we will take a ring R to be a commutative ring with identity. Recall from MA3201 on what
ring homomorphisms are. These are maps ϕ : R → S such that eR 7→ eS. We also recall what an integral domain
(Definition 1.1) and a field (Definition 1.2) are.

Definition 1.1 (integral domain). Let D be an integral domain. Then, for all x,y ∈ D,

xy = 0 implies x = 0 or y = 0.

Definition 1.2 (field). A field F is a domain such that every element has a multiplicative inverse, i.e.

for all x ∈ F there exists y ∈ F such that xy = eF .

Definition 1.3 (field of fractions). Let D be an integral domain. Define the field of fractions K as
follows:

(i) The elements of K are equivalence classes of pairs (p,q), where p,q ∈ D and q ̸= 0. Two pairs
(p,q) and (r,s) are considered equivalent if and only if

p · s = q · r

(ii) The sum of two equivalence classes [(p,q)] and [(r,s)] is defined as

[(p,q)]+ [(r,s)] = [(p · s+q · r,q · s)]

(iii) The product of two equivalence classes [(p,q)] and [(r,s)] is defined as

[(p,q)] · [(r,s)] = [(p · r,q · s)]

Proposition 1.1. Let D be an integral domain and K be its field of fractions. Then, there is the following
canonical inclusion:

D ↪→ K where x 7→ (x,1) =
x
1
.

Definition 1.4 (polynomial ring). Let R be a ring. Define the ring of polynomials R [x] as follows:

R [x] =

{
∑

finite
aixi : ai ∈ R

}

Definition 1.5 (degree). The degree of a polynomial in R [x] can be defined using the following map:

deg : R [x]→ Z≥0 where ∑
finite

aixi 7→ max{d : ad ̸= 0}
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Proposition 1.2. We have the following properties on the degree of two polynomials f ,g ∈ R [x]:
(1). deg( f g) = deg f +degg
(2). deg( f +g)≤ max{deg f ,degg}

Naturally, we can extend Definition 1.4 to a polynomial ring of two variables.

Definition 1.6 (polynomial ring). Let R be a ring. Define the ring of polynomials in two variables x1

and x2, denoted by R [x1,x2], to be as follows:

R [x1,x2] =

{
∑

i+ j=k
ai jxi

1x j
2 : ai j ∈ R

}

Recall from MA3201 on what it means for a ring R to be a unique factorisation domain (UFD).

Lemma 1.1 (Gauss’ lemma). Every element factorises uniquely into prime elements up to units.

Proposition 1.3. Let R be a UFD and K be its field of fractions. Then, there exists the canonical
inclusion R ↪→ K. Also, we have the map

R [x]→ K [x] where f 7→ f .

Then, f is irreducible over R [x] if and only if f is irreducible over K [x].

Proposition 1.4. Let R be a UFD. Then, R [x] is a UFD.

Corollary 1.1. Let R be a UFD. Then, R [x1, . . . ,xn] is a UFD.

Definition 1.7 (ideal). Let R be a commutative ring. An ideal I ⊆ R is such that

for all a,b ∈ I and r ∈ R we have a+b ∈ I and ra ∈ I.

Definition 1.8 (kernel and image). Let

ϕ : R → S be a ring homomorphism.

Then,

kerϕ = {r ∈ R : ϕ (r) = 0} is an ideal of R

and

Imϕ = {ϕ (r) : r ∈ R} .

Definition 1.9. Let I ⊆ R be an ideal. We say that I is generated by the set {x1, . . . ,xk} and we write
I = (x1, . . . ,xk) if

I =
{
∑rixi

}
.
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Furthermore, I is said to be finitely-generated if there exists a finite set G ⊆ R such that I = (G).

Definition 1.10 (Noetherian ring). A ring R is said to be Noetherian if any ideal of R is finitely
generated.

Theorem 1.1 (Hilbert basis theorem). Let R be a Noetherian ring. Then, R [x] is also Noetherian.

Corollary 1.2. Let R be a Noetherian ring. Then, R [x1, . . . ,xn] is also Noetherian.

Definition 1.11 (quotient ring). Let I be an ideal of R. Then, the quotient ring R/I contains elements
of the form a+ I. For any a,b ∈ R/I, we write

a = a+ I and b = b+ I where a,b ∈ R.

As such, we have the following properties:
(i) a+b = (a+b)+ I

(ii) ab = ab+ I

Theorem 1.2. Let I be an ideal of a ring R. Then,

I is a prime ideal if and only if R/I is an integral domain.

Theorem 1.3. Let I be an ideal of a ring R. Then,

I is a maximal ideal if and only if R/I is a field.

Also, recall the definition of the characteristic of a ring.

Definition 1.12 (algebraically closed field). Let k be a field. We say that k is algebraically closed if
every f ∈ k [x] has a root in k. We write

k to denote the algebraic closure of k.

Example 1.1 (algebraic closure of Q). Recall that Q denotes the field of rational numbers. The algebraic
closure of Q is the field Q, which consists of all algebraic numbers, denoted by A. Recall that an algebraic
number is any complex number that is a root of some non-zero polynomial with coefficients in Q. Q is a proper
subfield of C since there are transcendental numbers like π and e that are not contained in Q.

As such, Q is not algebraically closed.

Example 1.2 (algebraic closure of C). The field of complex numbers C is algebraically closed, which is a
consequence of the fundamental theorem of algebra. One recalls that this theorem states that every non-constant
polynomial with complex coefficients has a root in C. So, C = C.



MA4273 ALGEBRAIC GEOMETRY OF CURVES AND SURFACES Page 5 of 33

1.2. Affine Spaces and Algebraic Sets

Definition 1.13 (the affine n-space). Let k be any field. By An(k), we shall mean the Cartesian product
of k with itself n times. That is,

An(k) = {(a1, . . . ,an) : ai ∈ k for all i = 1, . . . ,n} .

We call An (k) the affine n-space over k; its elements will be called points.

In particular, for Definition 1.13,

A1 (k) is the affine line

A2 (k) is the affine plane

Definition 1.14 (zero and hypersurface). If F ∈ k [X1, . . . ,Xn], a point P = (a1, . . . ,an) in An (k) is a
zero of F if

F (P) = F (a1, . . . ,an) = 0.

If F is not a constant, the set of zeros of F is the hypersurface defined by F , and is denoted by V (F).

Example 1.3. A hypersurface in A2 (k) is an affine plane curve. If F is a polynomial of degree one, V (F) is a
hyperplane in An (k); if n = 2, it is a line.

Example 1.4. Let k = R. Consider V
(
Y 2 −X

(
X2 −1

))
⊆ A2. The graph is an example of an elliptic curve

(Figure 1).

Figure 1: The equation y2 − x
(
x2 −1

)
= 0

Example 1.5. Let k = R. Consider V
(
Y 2 −X2 (X +1)

)
⊆ A2. Again, the graph is an example of an elliptic

curve (Figure 2).

Example 1.6. Let k = R. Consider V
(
Z2 −

(
X2 +Y 2

))
⊆ A3. The graph is an example of a cone (Figure 3).

Example 1.7. Let k = R. Consider V
(
Y 2 −XY −X2Y +X3

)
⊆ A2 and the corresponding graph (Figure 4).

More generally, if S is any set of polynomials in k [X1, . . . ,Xn], we let

V (S) = {P ∈ An : F (P) = 0 for all F ∈ S}=
⋂

F∈S

V (F)

If S = {F1, . . . ,Fr}, we usually write

V (F1, . . . ,Fr) instead of V ({F1, . . . ,Fr}) .
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Figure 2: The equation y2 − x2 (x+1) = 0

Figure 3: The equation z2 −
(
x2 + y2

)
= 0

Figure 4: The equation y2 − xy− x2y+ x3 = 0

Definition 1.15 (algebraic set). A subset X ⊆ An (k) is an affine algebraic set or simply an algebraic
set if X =V (S) for some S.

Example 1.8 (Fulton p. 5 Question 11). Prove that the set

X =
{(

t, t2, t3) ∈ A3 (k) : t ∈ k
}

is algebraic.

Solution. We have (x,y,z) ∈ X when there exists t ∈ k such that

x = t y = t2 z = t3.

So, the relations y− x2 = 0 and z− x3 = 0 must hold. That is, on the set X , the polynomials

f1 (x,y,z) = y− x2 and f2 (x,y,z) = z− x3 must vanish.

We claim that

X =V
(
y− x2,z− x3) .
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To prove the forward inclusion ⊆, suppose (x,y,z) ∈ X . Then, (x,y,z) =
(
t, t2, t3

)
for some t ∈ k. So,

y− x2 = t2 − t2 = 0 and z− x3 = t3 − t3 = 0. It follows that (x,y,z) ∈V
(
y− x2,z− x3

)
.

As for the reverse inclusion ⊇, suppose (x,y,z) ∈ V
(
y− x2,z− x3

)
. Then, y− x2 = 0 and z− x3 = 0. As such,

by parametrising using x = t, we have y = t2 and z = t3. As such, the result follows. □

Example 1.9 (Fulton p. 5 Question 11). Prove that the set

X =
{
(cos t,sin t) ∈ A2 (R) : t ∈ R

}
is algebraic.

Solution. We have (x,y) ∈ X if there exists t ∈ R such that x = cos t and y = sin t. As such, the relation x2 +

y2 −1 = 0 must hold. In other words, on the set X , the polynomial f (x,y) = x2 +y2 −1 must vanish. It suffices
to show that

X =V
(
x2 + y2 −1

)
.

For the forward inclusion, suppose (x,y) ∈ X . Then, (x,y) = (cos t,sin t) for some t ∈ R. So, x2 + y2 − 1 = 0,
and it follows that (x,y) ∈V

(
x2 + y2 −1

)
. The proof of the reverse inclusion is similar. □

Example 1.10 (Fulton p. 5 Question 11). Prove that the set of points in A2 (R) whose polar coordinates
(r,θ) satisfy the equation r = sinθ is algebraic.

Solution. Naturally, we write x2 + y2 − y. One can show that X =V
(
x2 + y2 − y

)
. □

Example 1.11 (Fulton p. 5 Question 13). Prove that the set

X =
{
(x,y) ∈ A2 (R) : y = sinx

}
is not algebraic.

Solution. The graph of y = sinx does not satisfy any polynomial equation p(x,y) ∈ R [x,y] so it cannot be
described as the zero locus of some polynomial. To be more rigorous, for any solution (x,y) of P(x,y) = 0, we
note that (x+2nπ,y) for n ∈ Z is also a solution, and this occurs infinitely many times. □

Example 1.12 (Fulton p. 5 Question 13). Prove that the set{
(cos t,sin t, t) ∈ A3 (R) : t ∈ R

}
is not algebraic.

Solution. Same idea as Example 1.11 — consider translating by 2nπ which will also yield another solution.
Hence, we can obtain infinitely many solutions, which is a contradiction as there does not exist any polynomial
with infinitely many roots. □

Proposition 1.5. We have the following properties:
(i) If I is the ideal in k [X1, . . . ,Xn] generated by S, then

V (S) =V (I) so every algebraic set is equal to V (I) for some I

(ii) Intersection of algebraic sets is algebraic: if {Iα} is any collection of ideals, then

V

(⋃
α

Iα

)
=
⋂
α

V (Iα)

(iii) If we have ideals I ⊆ J, then V (J)⊆V (I)
(iv) Finite union of algebraic sets is algebraic: V (FG) = V (F)∪V (G) for any polynomials F and

G, and

V (I)∪V (J) =V ({FG : F ∈ I,G ∈ J})
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(v) Finite subset of An (k) is an algebraic set: V (0) = An (k), V (1) = /0, and

V (X1 −a1, . . . ,Xn −an) = {(a1, . . . ,an)} for all ai ∈ K

Recall and (ii) and (iv) of Proposition 1.5, which respectively state that the intersection and finite union of
algebraic sets are algebraic. We will see in Example 1.13 that the countable collection of algebraic sets may not
be algebraic.

Example 1.13 (Fulton p. 5 Question 10). Give an example of a countable collection of algebraic sets whose
union is not algebraic.

Solution. Here is a classic example. For each n ∈ Z≥0, consider the algebraic set

Xn =
{
(x,y) ∈ A2 (k) : y− xn = 0

}
=V (y− xn) which is an algebraic subset of A2 (k) .

Define

X =
∞⋃

n=0

Xn =
∞⋃

n=0

{
(x,y) ∈ A2 (k) : y− xn = 0

}
.

We shall prove that x is not an algebraic set. Suppose on the contrary that there exists a non-zero polynomial
f (x,y) ∈ k [x,y] such that X =V ( f ). Then,

f (x,y) = 0 for every (x,y) ∈ X .

Since X contains each curve y = xn for n ∈ Z≥0, then

f (x,xn) = 0 for all x ∈ k and n ∈ Z≥0.

As this holds for infinitely many n, it forces restrictive conditions on the polynomial f . In particular, the only
way

f (x,xn) = 0 for all x ∈ k and n ∈ Z≥0 is f is the zero polynomial.

If f were not the zero polynomial, then for a fixed non-zero f , there is a bound on how many distinct irreducible
curves of the form y−xn it could vanish on (unless it vanishes on the entire plane). However, we have infinitely
many distinct curves y = xn. Hence, f = 0 in k [x,y]. As V ( f ) =V (0) =A2 (k), then X =A2 (k). However, our
union

X =
∞⋃

n=0

Xn is a proper subset of A2 (k) ,

which is a contradiction. □

1.3. The Ideal of a Set of Points

Definition 1.16 (ideal). For any subset X of An (k), we consider those polynomials that vanish on X .
They form an ideal in k [X1, . . . ,Xn], called the ideal of X , and we write I (X). So,

I (X) = {F ∈ k [X1, . . . ,Xn] : F (a1, . . . ,an) = 0 for all (a1, . . . ,an) ∈ X} .

Proposition 1.6 gives some relations between ideals and algebraic sets.
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Proposition 1.6. The following hold:
(i) If X ⊆ Y , then I (Y )⊆ I (X)

(ii) I ( /0) = k [X1, . . . ,Xn]

(iii) I (An (k)) = (0) if k is an infinite field
(iv) I ({(a1, . . . ,an)}) = (X1 −a1, . . . ,Xn −an) for a1, . . . ,an ∈ k
(v) For any set S of polynomials and set X of points, we have

S ⊆ I (V (S)) and X ⊆V (I (X))

(vi) For any set S of polynomials and set X of points, we have

V (I (V (S))) =V (S) and I (V (I (X))) = I (X) .

So, if V is an algebraic set, then V (I (V )) and if I is the ideal of an algebraic set, then I = I (V (I))

Proposition 1.7. An ideal that is the ideal of an algebraic set has a property not shared by all ideals.
That is,

I = I (X) and Fn ∈ I for some n ∈ N implies F ∈ I.

Definition 1.17 (radical). If I is any ideal in a ring R, the radical of I, denoted by Rad(I), is defined to
be

{a ∈ R : an ∈ I for some n ∈ N} .

Proposition 1.8. Rad(I) is an ideal containing I.

Definition 1.18 (radical ideal). An ideal I is a radical ideal if I = Rad(I).

Proposition 1.9. I (X) is a radical ideal for any X ⊆ An (k).

1.4. The Hilbert Basis Theorem

Recall the Hilbert basis theorem (Theorem 1.1 and its corollary (Corollary 1.2) which as a whole, states
that R is a Noetherian ring, then R [x] is also Noetherian, and consequently, R [x1, . . . ,xn] is Noetherian. We will
prove this result.

Proof. Suppose I ⊆ R [x] is not finitely generated. Take f1 ∈ I which has minimal degree in I. Subsequently,
define f2 ∈ I \ ( f1) which has minimal degree in I \ ( f1). By defining each fi recursively, we have

fn ∈ I \ ( f1, . . . , fn−1) of minimal degree in I \ ( f1, . . . , fn−1) .

By assumption that I is not finitely generated, we can keep picking new polynomials in this way forever, i.e. no
finite subset spans I.

Let deg fi = di. If di = 0 for infinitely many i, then we obtain infinitely many constant elements in I ⊆ R [x].
However, those constants lie in R itself, giving rise to an infinite sequence in the ideal of R generated by
these constants. As R is Noetherian, the ideal generated by these elements of R must be finitely generated,
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contradicting our construction that each new fi was outside the previously generated ideal.

If instead infinitely many fi have positive degree, consider their leading coefficients. Denote by ℓi ∈ R the
leading coefficient of fi. Then ℓ1, ℓ2, . . . all lie in some ideal in R. Because R is Noetherian, the ideal in R
generated by {ℓ1, ℓ2, . . .} must be finitely generated. Hence there exist i1, . . . , im such that

(ℓ1, ℓ2, . . . , ℓn, . . .) = (ℓi1 , . . . , ℓim)⊆ R.

By appropriate linear combinations in R [x], one deduces that fn would end up in the ideal ( fi1 , . . . , fim)⊆ R [x]
for sufficiently large n, contradicting the choice of fn. The contradiction arises from assuming that I ⊂ R[x]
was not finitely generated. Thus no such infinite construction can succeed. Therefore every ideal in R [x] is
finitely generated, i.e. R [x] is Noetherian. The proof of the case involving n variables follows by an inductive
argument.

Corollary 1.3. Let k be a field. Then, k [X1, . . . ,Xn] is Noetherian.

1.5. Irreducible Components of an Algebraic Set

An algebraic set may be the union of several smaller algebraic sets.

Definition 1.19 (reducible algebraic set). An algebraic set V ⊆ An is reducible if

V =V1 ∪V2 for some algebraic sets V1,V2 in An and Vi ̸=V.

Otherwise, V is irreducible.

Proposition 1.10. An algebraic set V is irreducible if and only if I (V ) is prime.

Lemma 1.2. Let S be any non-empty collection of ideals in a Noetherian ring R. Then,

S has a maximal member,

i.e. there is an ideal I in S that is not contained in any other ideal of S.

Theorem 1.4. Let V be an algebraic set in An (k). Then, there exist unique irreducible algebraic sets
V1, . . . ,Vm such that

V =
m⋃

i=1

Vi and Vi ⊊Vj for all i ̸= j.

The Vi are called the irreducible components of V , so

V =
m⋃

i=1

Vi is the decomposition of V into irreducible components.

1.6. Algebraic Subsets of the Plane

We will take a closer look at the affine plane A2 (k) and find all its algebraic subsets before developing the
general theory further.
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Proposition 1.11. Let F and G be polynomials in k [X ,Y ] with no common factors. Then,

V (F,G) =V (F)∩V (G) is a finite set of points.

Corollary 1.4. If F is an irreducible polynomial in k [X ,Y ] such that V (F) is infinite, then

I (V (F)) = (F) and V (F) is irreducible.

Corollary 1.5. Suppose k is an infinite field. Then,

the irreducible subsets of A2 (k) are A2 (k) , /0,points, and irreducible plane curves V (F) ,

where F is an irreducible polynomial and V (F) is infinite.

Corollary 1.6. Assume k is an algebraically closed field and F is a non-constant polynomial in k [X ,Y ].
Let F = Fn1

1 . . .Fnr
r be the decomposition of F into irreducible factors. Then,

r⋃
i=1

V (Fi) is the decomposition of V (F) into irreducible components

and I (V (F)) = (F1 . . .Fr).

1.7. Hilbert’s Nullstellensatz

If we are given an algebraic set V , Proposition 1.11 gives a criterion for telling whether V is irreducible or
not. What it is lacking is a way to describe V in terms of a given set of polynomials that define V . It is Hilbert’s
Nullstellensatz, or the zero-locus-theorem, which tells us the exact relationship between ideals and algebraic
sets. We begin with the Weak Nullstellensatz (Lemma 1.3) before deducing the main result (Theorem 1.5).

Lemma 1.3 (Weak Nullstellensatz). Let k be an algebraically closed field. If

I is a proper ideal in k [X1, . . . ,Xn] then V (I) ̸= /0.

Theorem 1.5 (Hilbert’s Nullstellensatz). Let I be an ideal in k [X1, . . . ,Xn], where k is an algebraically
closed field. Then, I (V (I)) = Rad(I).

What the main theorem (Theorem 1.5) is trying to say is as follows. First, recall that V (I) is the set of
points in the affine space An (k) where all polynomials in the ideal I vanish, i.e. V (I) is the solution set of the
polynomial equations on I. As such, I (V (I)) is the ideal of all polynomials that vanish on V (I). If we have
polynomials F1, . . . ,Fr and G in k [X1, . . . ,Xn] and G vanishes whenever F1, . . . ,Fr vanish, then there exists an
equation

GN = A1F1 + . . .+ArFr for some N > 0 and Ai ∈ k [X1, . . . ,Xn] .

In short,

a polynomial G vanishes on V (I) if and only if some power of G is contained in I.

Corollary 1.7. If I is a radical ideal in k [X1, . . . ,Xn], then I (V (I)) = I.
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Corollary 1.8. If I is a prime ideal, then V (I) is irreducible.

Corollary 1.9. Let F be a non-constant polynomial in k [X1, . . . ,Xn] and F = Fn1
1 . . .Fnr

r be the
decomposition of F into irreducible factors. Then,

V (F) =
r⋃

i=1

V (Fi) is the decomposition of V (F) into irreducible components

and I (V (F)) = (F1 . . .Fr).

1.8. Modules

Definition 1.20 (R-module). Let R be a ring. An R-module is a commutative group M, with the group
law on M being +, the additive identity being 0M or just 0, together with a scalar multiplication map
R×M → M, such that the following properties are satisfied:

(i) For all a,b ∈ R and m ∈ M, we have (a+b)m = am+bm
(ii) For all a ∈ R and m,n ∈ M, we have a(m+n) = am+an

(iii) For all a,b ∈ R and m ∈ M, we have (ab)m = a(bm)

(iv) For m ∈ M, we have 1R ·m = m, where 1R is the multiplicative identity in R

Example 1.14. A Z-module is a commutative group where

(±a)m is ± (m+ . . .+m) a times for a ∈ Z≥0.

Example 1.15. If R is a field, an R-module is the same thing as a vector space over R.

Example 1.16. The multiplication in R makes any ideal of R into an R-module.

Example 1.17. Let ϕ : R → S be an R-module homomorphism. Define

r · s for r ∈ R,s ∈ S by the equation r · s = ϕ (r)s.

This makes S into an R-module. In particular, if R is a subring of a ring S, then S is an R-module.

Definition 1.21 (submodule). A subgroup N of an R-module M is a submodule if

for all a ∈ R,m ∈ N we have am ∈ N.

Definition 1.22 (finitely generated module). If S is a set of elements of an R-module M, the submodule
generated by S is defined to be

{risi : ri ∈ R,si ∈ S}

and it is the smallest submodule of M that contains S. Furthermore, if S = {s1, . . . ,sn} is finite, then the
submodule generated by S is denoted by

∑Rsi.

M is said to be finitely generated if

M = ∑Rsi for some s1, . . . ,sn ∈ M.
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Definition 1.23 (module finite). Let R be a subset of a ring S. Then, S is module finite over R if S is
finitely generated as an R-module. Furthermore, if R and S are fields and S is module finite over R, then
dimR S = [S : R].
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2. Affine Varieties

2.1. Coordinate Rings, Polynomial Maps and Coordinate Changes

From this section onwards, we will let k denote an algebraically closed field. Recall from Definition 1.15
that An = An (k) denotes an affine algebraic set. We also say that an irreducible affine algebraic set is an affine
variety.

Definition 2.1 (coordinate ring). Let V ⊆ An be a non-empty variety. Then, I (V ) is a prime ideal in
k [X1, . . . ,Xn] so k [X1, . . . ,Xn]/I (V ) is an integral domain. We call

Γ(V ) = k [X1, . . . ,Xn]/I (V ) the coordinate ring of V.

Definition 2.2. For any non-empty set V , define

F (V,k) to be the set of functions from V to k.

F (V,k) is made into a ring in the usual way as follows:
(i) For all f ,g ∈ F (V,k) and x ∈V , we have ( f +g)(x) = f (x)+g(x)

(ii) For all f ,g ∈ F (V,k), we have ( f g)(x) = f (x)g(x)

Definition 2.3 (polynomial function). If V ⊆ An is a variety, a function f ∈ F (V,k) is a polynomial
function if there exists a polynomial F ∈ k [X1, . . . ,Xn] such that

f (a1, . . . ,an) = F (a1, . . . ,an) for all (a1, . . . ,an) ∈V.

The polynomial functions form a subring of F (V,k) containing k.

Two polynomials functions F and G determine the same function if and only if

(F −G)(a1, . . . ,an) = 0 for all (a1, . . . ,an) ∈V or equivalently F −G ∈ I (V ) .

As such, we can identity Γ(V ) with the subring of F (V,k) consisting of all polynomial functions on V . We can
view an element of Γ(V ) as a function on V or as an equivalence class of polynomials.

Example 2.1. Let V ⊆ A2 be the variety defined by the equation

V =
{
(x,y) ∈ A2 : y2 = x3 − x

}
.

Recall that this is the affine curve defined by the polynomial f (x,y) = y2 − x3 + x in the polynomial ring
k [x,y] for some algebraically closed field k. The ideal I (V ) ⊆ k [x,y] is generated by the polynomial f (x,y) =
y2 − x3 + x, so I (V ) =

(
y2 − x3 + x

)
. Hence, the coordinate ring of V is

Γ(V ) = k [x,y]/
(
y2 − x3 + x

)
.

This ring, or integral domain to be more specific, consists of all polynomials in x and y, modulo the equivalence
relation defined by y2 = x3 − x. For example, we can write y3 in Γ(V ) can be simplified as

y3 = y · y2 = y
(
x3 − x

)
= x3y− xy.
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Definition 2.4 (polynomial map). Let V ⊆ An and W ⊆ Am be varieties. A mapping

ϕ : V →W is a polynomial map

if there exist T1, . . . ,Tm ∈ k [X1, . . . ,Xn] such that

ϕ (a1, . . . ,an) = (T1 (a1, . . . ,an) , . . . ,Tm (a1, . . . ,an)) for all (a1, . . . ,an) ∈V.

Any mapping ϕ : V →W induces a homomorphism ϕ̃ : F (W,k)→F (V,k) by setting ϕ ( f ) = f ◦ϕ . If ϕ is
a polynomial map, then ϕ̃ (Γ(W ))⊆ Γ(V ) so ϕ̃ restricts to a homomorphism from Γ(W ) to Γ(V ). If f ∈ Γ(W )

is the I (W )-residue of a polynomial F , then ϕ̃ ( f ) = f ◦ϕ is the I (V )-residue of the polynomial F (T1, . . . ,Tm).
Also, we often write T = (T1, . . . ,Tm).

Proposition 2.1. Let V ⊆ An and W ⊆ An be affine varieties. Then, there exists a natural one-to-one
correspondence between

the polynomial maps ϕ : V →W and the homomorphism ϕ̃ : Γ(W )→ Γ(V ) .

Any such ϕ is the restriction of a polynomial map from An to Am. So,

V and W are isomorphic if and only if their coordinate rings are isomorphic.

If T = (T1, . . . ,Tm) is a polynomial map from An to Am and F is a polynomial in k [X1, . . . ,Xm], let
FT = T̃ (F) = F (T1, . . . ,Tm). For ideals I and algebraic sets V in Am, we let IT denote the ideal in k [X1, . . . ,Xn]

generated by
{

FT : F ∈ I
}

and V T be the algebraic set T−1 (V ) = V
(
IT
)
, where I = I (V ). If V is the

hypersurface of F , then V T is the hypersurface of FT .

Definition 2.5 (affine coordinate change). An affine change of coordinates on An is a polynomial map

T : An → An such that deg(Ti) = 1 and T is bijective.

If

Ti = ∑ai jX j +ai0 then T = T ′′ ◦T ′ for some linear map T ′ and translation T ′′
i = Xi +ai0.

Example 2.2 (affine coordinate change on A2). Let T : A2 → A2 be defined by

T (X ,Y ) = (2X +3Y +1,−X +4Y +5) .

One checks that the degree of each term in T1 and T2 is 1, so deg(T1) = deg(T2) = 1. The transformation matrix
associated with the linear part of T is

A =

[
2 3
−1 4

]
which is invertible.

As such, T is bijective. The linear map and translation map are given by

T ′ (X ,Y ) = (2X +3Y,−X +4Y ) and T ′′ (X ,Y ) = (X +1,Y +5) respectively.

One checks that T = T ′′ ◦T ′.
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Proposition 2.2. The following properties hold:
(i) T is invertible if and only if T ′ is invertible

(ii) If T and U are affine change of coordinates on An, then so are T ◦U and T−1; T is an isomorphism
of the variety with itself

2.2. Rational Functions and Local Rings

Definition 2.6 (rational function). Let V ⊆An be a non-empty variety and Γ(V ) be its coordinate ring.
Since Γ(V ) is an integral domain, we can form its quotient field, known as the field of rational functions
on V . It is denoted by k (V ). An element of k (V ) is a rational function on V .

If f is a rational function on V and P ∈V , then f is defined at P if

there exist a,b ∈ Γ(V ) such that f =
a
b

and b(P) ̸= 0.

Note that there may be many different ways to write f as the ratio of polynomial functions; f is defined at P if
it s possible to find a denominator for f that does not vanish at P.

Example 2.3. Consider the variety

V =V (XW −Y Z)⊆ A4.

So, V consists of all points (x,y,z,w) ∈ k4 such that the equation xw− yz = 0 holds. The coordinate ring of
V is Γ(V ) = k [X ,Y,Z,W ]/(XW −Y Z), which consists of equivalence classes of polynomials in k [X ,Y,Z,W ]

where two polynomials are considered equivalent if their different is a multiple of XW −Y Z.

Consider the fractions X/Y and Z/W , which are viewed as rational functions in the field of fractions k (V ).
Since XW = Y Z, observe that

X
Y

=
Z
W

since XW = Y Z implies XW/(YW ) = Y Z/(YW ) .

Of course, this is provided that Y ̸= 0 and W ̸= 0.

Definition 2.7 (local ring and pole set). Let P ∈ V . Define OP (V ) to be the set of rational functions
f on V that are defined at P. This is called the local ring of V at P. The set of points P ∈V where f is not
defined is called the poly set of f .

One checks that OP (V ) forms a subring of k (V ) containing Γ(V ) and that

k ⊆ Γ(V )⊆OP (V )⊆ k (V ) .

Proposition 2.3. The following properties hold:
(i) The pole set of a rational function is an algebraic subset of V

(ii) Γ(V ) =
⋂

p∈V OP (V )
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2.3. Discrete Valuation Rings

Definition 2.8 (discrete valuation ring). Let R be an integral domain that is not a field. Then, any ring
R satisfying either of the following conditions is said to be a discrete valuation ring (DVR):

(i) R is Noetherian and local, and the maximal ideal is principal
(ii) There is an irreducible element t ∈ R such that every non-zero z ∈ R may be written uniquely as

z = utn for some unit u ∈ R and n ∈ Z≥0.

We say that t is a uniformising parameter for R and any other uniformising parameter is of the
form ut for some unit u in R.

Example 2.4. A classic example of a DVR is as follows:

R = Z(p) =
{a

b
∈Q : p does not divide b

}
where p is prime.

Here, Z(p) is the localization of Z at the prime ideal (p). Note that R is Noetherian and local with the unique
maximal ideal

m=
{a

b
∈ Z(p) : p | a

}
.

This maximal ideal is principal, so R is indeed a DVR by (i) of Definition 2.8. We can also view this example
from (ii) of Definition 2.8. Note that the prime p is an irreducible element of Z(p). Every non-zero z ∈ Z(p) can
be uniquely written as

z = upn for some unit in Z(p) and n ∈ Z≥0.

Definition 2.9. Let K be the quotient field of a DVR R. Then, any non-zero element z ∈ K has a unique
expression z = utn, where u is a unit in R and n ∈ Z. We say that n is the order of z and it can be written
as n = ord(z); we define ord(0) = ∞.

2.4. Forms

Definition 2.10. We define a form to be a homogeneous polynomial where all terms have the same
total degree.

Example 2.5. For example, for the polynomial

F (X ,Y,Z) = 3X2Y +5Y 2Z +7XZ2,

the total degree of each term is 3. Since all terms have the same degree, then F is a form of degree 3.

Let R be an integral domain. Now, we wish to connect a general polynomial in R [X1, . . . ,Xn] to a form in
R [X1, . . . ,Xn,Xn+1]. Suppose F is a form of degree d in R [X1, . . . ,Xn,Xn+1]. By definition, all terms of F have
total degree d. The map F 7→ F∗ removes Xn+1 by setting Xn+1 = 1. FOrmally,

F∗ = F (X1, . . . ,Xn,1) .

F∗ is now a polynomial in R [X1, . . . ,Xn] which is no longer homogeneous as substituting Xn+1 = 1 mixes terms
of different degrees. For example, if F = X2

1 Xn+1 +X2X2
n+1 which is a form of degree 3 in R [X1,X2,Xn+1], then

F∗ = X2
1 ·1+X2 ·12 = X2

1 +X2.



MA4273 ALGEBRAIC GEOMETRY OF CURVES AND SURFACES Page 18 of 33

This process is known as dehomogenization.

Conversely, we can consider the map f ∗ (known as homogenization) which transforms a general polynomial
into a form. Say f is a polynomial in R [X1, . . . ,Xn] with terms of varying degrees. Write f as f = f0 + f1 +

. . .+ fd , where fi is the homogeneous part of degree i. The map f 7→ f ∗ lifts f to a homogeneous polynomial
in R [X1, . . . ,Xn,Xn+1] by introducing a new variable Xn+1, so

f ∗ = Xd
n+1 f0 +Xd−1

n+1 f1 + . . .+ fd which ensures f ∗ is homogeneous of degree d.

Alternatively, f ∗ can be written compactly as

f ∗ = Xd
n+1 f

(
X1

Xn+1
, . . . ,

Xn

Xn+1

)
.

Here, the substitution Xi → Xi/Xn+1 homogenizes f , and multiplying by Xd
n+1 ensures that all terms have degree

d. For example, if f = X2
1 +X2, then

f ∗ = X2
n+1 ·X2

1 +X1
n+1 ·X2 = X2

1 Xn+1 +X2X2
n+1.

Example 2.6 (Fulton p. 24 Question 33). Factor Y 3 −2XY 2 +2X2Y +X3 into linear factors in C [X ,Y ].

Solution. One checks that F (X ,Y ) is a form of degree 3. Assume that F (X ,Y ) = 0. Suppose there exist a,b,c∈
C such that

X3 +2X2Y −2XY 2 +Y 3 = (X −aY )(X −bY )(X − cY ) .

Upon expanding the RHS and comparing the coefficients, we have

a+b+ c = 2 ab+ac+bc =−2 abc =−1.

By Vieta’s formula, these are the roots of the polynomial x3 −2x2 +2x−1 = 0. As such, we have the desired
factorisation into linear factors. □

Proposition 2.4. The following properties hold:
(i) (FG)∗ = F∗G∗ and ( f g)∗ = f ∗g∗

(ii) If F ̸= 0 and r is the highest power of Xn+1 that divides f , then

X r
n+1 (F∗)

∗ = F and ( f ∗)∗ = f

(iii) Let r = degg, s = deg f , and t = r+ s−deg( f +g). Then,

(F +G)∗ = F∗+G∗ and X t
n+1 ( f +g)∗ = X r

n+1 f ∗+X s
n+1g∗
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3. Local Properties of Plane Curves

3.1. Multiple Points and Tangent Lines

Recall that affine plane curves correspond to non-constant polynomials F ∈ k [X ,Y ] without multiple factors,
where F is determined up to multiplication by a non-zero constant. There are times it is useful to allow F to
have multiple factors, so we modify our definition slightly.

Definition 3.1 (equivalent polynomials). Two polynomials F,G ∈ k [X ,Y ] are equivalent if

there exists a non-zero λ ∈ k such that F = λG.

We define an affine plane curve to be an equivalence class of non-constant polynomials under this
equivalence relation.

Definition 3.2. The degree of a curve is the degree of a defining polynomial for the curve.

Example 3.1. A curve of degree one is a line, so we speak of the line aX +bY +c = 0 or the line given by the
equation aX +bY + c = 0.

Definition 3.3. If

F = ∏Fei
i where the Fi are the irreducible factors of F,

we say that the Fi’s are the components of F and the ei’s are the multiplicity of the component Fi. Fi is a
simple component if ei = 1, and multiple otherwise.

Definition 3.4. Let F be a curve and P = (a,b) ∈ F . The point P is a simple point of F if either
derivative FX (P) ̸= 0 or FY (P) ̸= 0. In this case, the line

FX (P)(X −a)+FY (P)(Y −b) = 0 is the tangent line to F at P.

A point that is not simple is said to be multiple. A curve with only simple points is a non-singular curve.

Example 3.2. Consider the following graph. It is given by the expression Y −X2. Note that FX (X ,Y ) =−2X
and FY (X ,Y ) = 1. Since FY never vanishes, the curve F (X ,Y ) does not have any multiple points. Equivalently,
all points are simple. As such, the line

−2a(X −a)+(Y −b) = 0 is the tangent line to F at P = (a,b) .
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We can rewrite this as Y = 2aX −a2. Moreover, the curve is non-singular.
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0

2

4

x

y

Example 3.3.

Example 3.4. Consider the following graph which is an example of an elliptic curve. It is given by the
expression Y 2 −X3 +X . We have

FX (X ,Y ) =−3X2 +1 and FY (X ,Y ) = 2Y.

Suppose FX = 0. Then, X =±1/
√

3. Note that X = 1/
√

3 lies outside the domain, so we consider X =−1/
√

3.
However,

(
−1/

√
3,0
)

does not lie on the elliptic curve. It follows that the curve is non-singular.

Also, the equation of the tangent line is

(
−3a2 +1

)
(X −a)+2b(Y −b) = 0 or equivalently Y =

(
3a2 −1

)
(X −a)

2b
+b.
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Example 3.5. Consider the following graph. It is given by the expression Y 2 −X3. One checks that

FX (X ,Y ) =−3X2 and FY (X ,Y ) = 2Y.
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Clearly, P = (0,0) is the only multiple point on this curve.
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Example 3.6. Consider the graph of the following curve (not an elliptic curve since the X2 term is present).
It is given by the expression Y 2 −X3 −X2. Again, one checks that P = (0,0) is the only multiple point on the
curve as FX (X ,Y ) =−3X2 −2X and FY (X ,Y ) = 2Y .
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−2

0

2

x

y

Consider the following graph known as a rose with three petals. It is given by the expression

(
X2 +Y 2)2

+3X2Y −Y 3.

We see that P = (0,0) is the only multiple point on the curve. To see why, we have

FX (X ,Y ) = 8X
(
X2 +Y 2)+6XY

FY (X ,Y ) = 8Y
(
X2 +Y 2)+3

(
X2 −Y 2)

At P = (0,0), one checks that FX (0,0) = FY (0,0) so (0,0) is a multiple point. Note that for any other point
P = (X ,Y ), the partial derivatives cannot vanish simultaneously, i.e. no other point on the curve satisfies both
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FX (X ,Y ) = 0 and FY (X ,Y ) = 0.
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Example 3.7. Lastly, consider the graph of the following rose with four loops given by the expression

F (X ,Y ) =
(
X2 +Y 2)3 −4X2Y 2.

By considering FX and FY , one can deduce that P = (0,0) is the only multiple point on the curve.
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Definition 3.5 (multiplicity). Let F be any curve and P = (0,0). Write

F = Fm +Fm+1 + . . .+Fn where Fi is a form in k [X ,Y ] of degree i and Fm ̸= 0.

Define m to be the multiplicity of F at P = (0,0), and write m = mP (F).

Note that mP (F)> 0. Using the rules for derivatives, one can check that

P is a simple point on F if and only if mP (F) = 1.

In this case, F1 is the tangent line to F at P. If m = 2, P is a double point; if m = 3, P is a triple point and so on.

Since Fm is a form in two variables, we can write

Fm = ∏Lri
i where the Li’s are distinct lines.
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Definition 3.6 (tangents and ordinary points). The Li’s are called the tangent lines to F at P = (0,0)
and ri is the multiplicity of the tangent. The line Li is a simple tangent if ri = 1. A double tangent is
defined similarly.

If F has m distinct tangents at P, we say that P is an ordinary multiple point of F . An ordinary
double point is called a node. We call a line through P a tangent of multiplicity zero if it is not tangent
to F at P.

Let

F = ∏Fei
i be the factorisation of F into irreducible components.

Then,

mp (F) = ∑eimP (Fi) .

Also, if L is a tangent line to Fi with multiplicty ri, then

L is tangent to F with multiplicity ∑eiri.

In particular, a point P is a simple point of F if and only if P belongs to just one component Fi of F , Fi is a
simple component of F , and P is a simple point of Fi.

Example 3.8 (simple point). Consider the curve F (X ,Y ) = Y −X , which is a straight line passing through
the origin P = (0,0). Note that the degree of F is 1, so F1 =Y −X and mP (F) = 1. Since mP (F) = 1, the origin
is a simple point, and the tangent to F at P is the line L : Y −X = 0, which coincides with the curve itself.

Example 3.9 (ordinary double point). Consider the curve F (X ,Y ) = Y 2 − X2, which represents two
intersecting lines. We write F as

F (X ,Y ) = (Y −X)(X +Y ) ,

for which the lowest degree term is F2 = (Y −X)(Y +X), so mP (F) = 2. At P = (0,0), the tangents are

L1 : Y −X = 0 and L2 : Y +X = 0.

These are simple tangent as r1 = r2 = 1. Since there are two distinct tangents at P, we say that P is an ordinary
double point, also known as a node.

Example 3.10 (cusp). Consider the curve F (X ,Y ) = Y 2 −X3, which describes a cusp. The term of lowest
degree is F2 = Y 2, so mP (F) = 2. The tangents at P = (0,0) are determined by F2 = Y 2, which is L1 : Y = 0
with multiplicity r1 = 2. There is only one tangent, which is a double tangent as r1 = 2. To conclude, P is not
an ordinary multiple point. Instead, it is a cusp.

Example 3.11 (tacnode). Consider the curve F (X ,Y ) = Y 4 −X4, which describes a tacnode. Consider the
following graph:
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We can write F as

F (X ,Y ) = (Y −X)2 (Y +X)2 .

The lowest-degree term is F4 = (Y −X)2 (Y +X)2, so mP (F) = 4. The tangents at P = (0,0) are

L1 : Y −X = 0 and L2 : Y +X = 0

with multiplicities r1 = 2 and r2 = 2 respectively. Since each tangent has a multiplicity greater than 1, then P is
not an ordinary multiple point. Instead, in Algebraic Geometry, we call it a tacnode.

In fact, we can extend the aforementioned definitions to an arbitrary point P = (a,b) ̸= (0,0). Define T to
be the translation that takes (0,0) to P. So, T (x,y) = (x+a,y+b). Then, FT = F (X +a,Y +b). Define mP (F)

to be m(0,0)
(
FT
)
, i.e. write FT = Gm +Gm+1 + . . .+Gi, where Gm ̸= 0, and let m = mp (F). If

Gm = ∏Lri
i with Li = αiX +βiY,

the lines αi (X −a)+βi (Y −b) are defined to be the tangent lines to F at P, and ri is the multiplicity of the
tangent. Note that T takes the points of FT to F , and the tangents to FT at (0,0) to the tangents to F at P. Since
FX (P) = FT

X (0,0) and FY (P) = FT
Y (0,0), we say that P is a simple point on F if and only if mP (F) = 1.

3.2. Multiplicites and Local Rings

Let F be an irreducible plane curve and P ∈ F . Recall that this means that the set of all (x,y) such that
f (x,y) = 0 cannot be expressed as the union of two proper subvarieties. Now, we will find the multiplicity of P
on F in terms of the local ring OP (F).

Definition 3.7. For any polynomial G ∈ k [X ,Y ],

denote its image in Γ(F) = k [X ,Y ]/(F) by g.

Theorem 3.1. P is a simple point of F if and only if OP (F) is a DRV. In this case, if L = aX +bY = c
is any line through P that is not tangent to F at P, then the image l of L in OP (F) is a uniformizing
parameter for OP (F).

Example 3.12. Let C be our base field and consider the irreducible plane curve f (X ,Y ) = Y 2 −X3 −X2. Let
P = (0,0), which lies on F . Clearly, P is a simple point by computing the partial derivatives FX and FY (or by
Example 3.6).

The local ring OP (F) consists of functions defined on F near P, modulo the ideal generated by f . Explicitly,
we have

OP (F) = C [X ,Y ]/
(
Y 2 −X3 −X2) .

This is a DVR. Consider the line L through P = (0,0) given by L : Y −X = 0. Substituting Y = X into f (X ,Y ),
we obtain f (X ,X) = X2 (X −1) = 0. Thus, L intersects F at P and another point (1,1). Since L is not tangent
to F at P, the image of L, denoted by l, is a uniformizing parameter in OP (F).

Suppose P is a simple point on an irreducible curve F . Let

ordF
P be the order function on k (F) defined by the DVR OP (F) .

When F is fixed, we may simply write ordP. Also, if G ∈ k [X ,Y ] and g is the image of G in Γ(F), we write
ordF

P (G) instead of ordF
P (g).



MA4273 ALGEBRAIC GEOMETRY OF CURVES AND SURFACES Page 25 of 33

Next, again suppose P is a simple point on F and L is a line through P. Then,

ordF
P (L)

= 1 if L is not tangent to F at P;

> 1 if L is tangent to F at P.

Theorem 3.2. Let P be a point on an irreducible curve F . Then, for sufficiently large n, we have

mP (F) = dimk

(
mP (F)n /mP (F)n+1

)
.

In particular, the multiplicity of F at P depends only on the local ring OP (F).

3.3. Intersection Numbers

Let F and G be plane curves and P ∈ A2. We now wish to define the intersection number of F and G at P
for which it will be denoted by I (P,F ∩G).

Definition 3.8 (proper intersection). For plane curves F and G and P ∈ A2, we say that F and G
intersect properly at P if F and G have no common component that passes through P.

(1) For any F , G and P such that F and G intersect properly at P, we have I (P,F ∩G) ∈ Z≥0 . Also,
I (P,F ∩G) = ∞ if F and G do not intersect properly at P.

(2) I (P,F ∩G) = 0 if and only if P ̸∈ F ∩G. I (P,F ∩G) depends only on the components of F and G
that pass through P. Also, if F or G is a non-zero constant, then I (P,F ∩G) = 0.

(3) If T is affine change of coordinates on A2 and T (Q) = P, then

I (P,F ∩G) = I
(
Q,FT ∩GT ) .

(4) I (P,F ∩G) = I (P,G∩F)

We say that two curves F and G intersect transversally at P if P is a simple point both on F and G, and
if the tangent line to F at P is different from the tangent line to G at P. We need the intersection number
to be one when F and G meet transversally at P. More generally, we require the following:

(5) I (P,F ∩G)≥ mP (F)mP (G), with equality occurring if and only if F and G have no tangent lines
in common at P.

(6) The intersection numbers should add when we take unions of curves. That is, if

F = ∏Fri
i and G = ∏Gs j

j then I (P,F ∩G) = ∑
i, j

ris jI (P,Fi ∩G j) .

(7) If F is irreducible, then

for any A ∈ k [X ,Y ] we have I (P,F ∩G) = I (P,F ∩ (G+AF)) .

We have two more useful properties.
(8) If P is a simple point on F , then I (P,F ∩G) = ordF

P (G)

(9) If F and G have no common components, then

∑
P

I (P,F ∩G) = dimk (k [X ,Y ]/(F,G)) .
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Theorem 3.3. There is a unique intersection number I (P,F ∩G) defined for all plane curves F and G
and all points P ∈ A2 satisfying the properties in Definition 3.8. It is given by the formula

I (P,F ∩G) = dimk
(
OP
(
A2)/(F,G)

)
.

Example 3.13. We attempt to calculate I (P,E ∩F), where

E =
(
X2 +Y 2)2

+3X2Y −Y 3 is the rose with three loops and

F =
(
X2 +Y 2)3 −4X2Y 2 is the rose with four loops.

Let P = (0,0). We replace F with F −
(
X2 +Y 2

)
E to simplify the computation. The idea is to eliminate higher-

order terms of F that are divisible by E as they do not affect the intersection number at P. After substitution,
we have

F −
(
X2 +Y 2)E = Y

((
X2 +Y 2)(Y 2 −3X2)−4X2Y

)
= Y G.

Here,

G =
(
X2 +Y 2)(Y 2 −3X2)−4X2Y.

Now, the intersection number I (P,E ∩F) reduces to I (P,E ∩ (Y G)). Since G is still complicated and involves
X2 terms, we apply a substitution G → G+3E, which simplifies G. After substituting, we obtain

G+3E = Y
(
5X2 −3Y 2 +4Y 3 +4X2Y

)
= Y H where H = 5X2 −3Y 2 +4Y 3 +4X2Y.

We note that

I (P,E ∩ (Y G)) = I (P,E ∩Y )+ I (P,E ∩G)

and

I (P,E ∩F) = I (P,E ∩Y )+ I (P,E ∩G) .

One sees by directly substituting Y = 0 into E that I (P,E ∩Y ) = I
(
P,X4 ∩Y

)
= 4. Geometrically, what this

means is the line Y = 0 meets the local branch of E with multiplicity 4 at the origin. Hence,

I (P,E ∩F) = 4+ I (P,E ∩G) .

Recall that G+3E = Y H. Hence,

I (P,E ∩G) = I (P,E ∩ (Y H)) = I (P,E ∩Y )+ I (P,E ∩H) .

Since I (P,E ∩Y ) = 4, then

I (P,E ∩G) = 4+ I (P,E ∩H) .

Hence,

I (P,E ∩F) = 8+ I (P,E ∩H) .

Recall (5) of Definition 3.8 which states that

I (P,F ∩G)≥ mP (F)mP (G)
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and equality holds if and only if F and G have no tangent line in common at P. Note that at (0,0), the curves
E = 0 and H = 0 do not share a tagnent line so equality holds. That is to say,

I (P,E ∩H) = mP (E)mP (H) .

At this juncture, recall that the multiplicity mP (F) of a curve F at a point P = (0,0) is the smallest degree of
the non-zero homogeneous terms in the polynomial H (X ,Y ). By expanding E and H into their homogeneous
parts, we have

E (X ,Y ) = X4 +2X2Y 2 +Y 4 +3X2Y −Y 3 and F = 5X2 −3Y 2 +4Y 3 +4X2Y,

for which we infer that mP (E) = 3 and mP (H) = 2, so I (P,E ∩H) = 3 ·2 = 6. We conclude that I (P,E ∩F) =

14.
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4. Projective Varieties

4.1. Projective Space

Suppose we wish to study all the points of intersection of two curves, say for instance Y 2 = X2 +1 and the
line Y = αX , where α ∈ k. If α ̸= ±1, they intersect at two points. If α = ±1, they do not intersect, but the
curve is asymptotic to the line. We wish to enlarge the plane in such a way that two such curves intersect at
infinity.

One common way to achieve this is as follows: for each point (x,y)∈A2, identify it with the point (x,y,1)∈A3.
Every point (x,y,1) determines a line in A3 that passes through (0,0,0) and (x,y,1). Also, every line through
(0,0,0) except those lying in the plane z = 0 corresponds to exactly one such point. The lines through (0,0,0)
in the plane z = 0 can be thought of as corresponding to the points at infinity. As such, we have the following
definition of the projective n-space (Definition 4.1).

The big picture here is that Projective Geometry extends the usual affine geometry by adding points at infinity
or lines at infinity to make parallel lines meet.

Definition 4.1 (projective space). Let k be an arbitrary field. The projective n-space over k, denoted
by Pn (k) or just Pn, is defined to be

the set of all lines through (0, . . . ,0) in An+1 (k) .

Any point (x) = (x1, . . . ,xn+1) ̸= (0, . . . ,0) determines a unique such line, which is
{(λx1, . . . ,λxn+1) : λ ∈ k}. Two such points (x) and (y) determine the same line if and only if
there exists a non-zero λ ∈ k such that yi = λxi for all 1 ≤ i ≤ n + 1. In this case, (x) and (y) are
equivalent — Pn may be identified with the set of equivalence class of points in An+1 \{(0, . . . ,0)}.

The elements of Pn will be called points. If a point P ∈ Pn is determined as above by some
(x1, . . . ,xn+1) ∈ An+1, we say that (x1, . . . ,xn+1) are homogeneous coordinates for P. We often write
[x1 : . . . : xn+1] to indicate that (x1, . . . ,xn+1) are homogeneous coordinates for P.

Let

Ui = {[x1 : . . .xn+1] ∈ Pn : xi ̸= 0} .

Then, each P ∈Ui can be written uniquely in the form

P = [x1 : . . .xi−1 : 1 : xi+1 : . . . : xn+1] .

The coordinates (x1, . . . ,xi−1,xi+1, . . . ,xn+1) are the non-homogeneous coordinates for P with respect to Ui. If
we define

ϕi : An →Ui via ϕi (a1, . . . ,an) = [a1 : . . . : an−1 : 1 : ai : . . . : an] ,

then there is a bijective correspondence between the points of An and the points of Ui. Note that

Pn =
n+1⋃
i=1

Ui so Pn is covered by n+1 sets, each of which looks just like the affine n-space.

We will usually concentrate on Un+1.
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Definition 4.2 (hyperplane at infinity). Define the hyperplane at infinity, H∞, as follows:

H∞ = Pn \Un+1 = {[x1 : . . . : xn+1] : xn+1 = 0}

So, H∞ may be identified with Pn−1. As such, we infer that

Pn =Un+1 ∪H∞

is the union of an affine n-space and a set that gives all directions in an affine n-space.

Example 4.1. P0 (k) is obviously a point.

Example 4.2. We define

P1 (k) = {[x : 1] : x ∈ k}∪{[1 : 0]} or the projective line over k

to be the affine line plus one point at infinity

Example 4.3. We define

P2 (k) =
{
[x : y : 1] : (x,y) ∈ A2}∪{[x : y : 0] : [x : y] ∈ P1}

to be the projective plane over k. It is the usual affine plane A2 (k) extended by adding a line at infinity, for
which the line is denoted by H∞. By adding a single point at infinity for each direction in the plane, this makes
lines in Projective Geometry extend indefinitely and intersect at infinity.

Example 4.4. Consider a line Y = mX + b in A2. A line in the affine plane can be written in projective
coordinates as [x : y : z], where y=mx+bz and z ̸= 0. In Projective Geometry, we make equations homogeneous
so they are invariant under equivalence classes. The affine line Y = mX +b becomes the projective set{

[x : y : z] ∈ P2 : y = mx+bz
}
.

When z = 0, the equation reduces to a single point [1 : m : 0]. All lines with the same slope m intersect the same
point on the line at infinity.

Example 4.5. Consider the curve Y 2 = X2 + 1 in A2. In Projective Geometry, the equation becomes Y 2 =

X2 +Z2, which describes a curve in the projective plane P2 (k). The affine part of the curve is [x : y : z] ∈ P2,
where z ̸= 0.

At the line at infinity, we have z = 0, so the equation reduces to Y 2 = X2. This yields two points

[1 : 1 : 0] and [1 : −1 : 0] which are the points where the curve intersects H∞.

In A2, these points correspond to where the lines Y = X and Y =−X intersect the curve.

4.2. Projective Algebraic Sets

In this section, we develop the idea of algebraic sets in Projective Geometry, i.e. Pn = Pn (k). The concepts
are entirely similar to those for affine algebraic sets. To start off, a point P ∈ Pn is a zero of a polynomial
F ∈ k [X1, . . . ,Xn+1] if

F (x1, . . . ,xn+1) = 0

for every choice of homogeneous coordinates (x1, . . . ,xn+1) for P. We then write F (P) = 0. If F is a form and
F vanishes at one representative of P, then it vanishes at every representative.
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Definition 4.3 (projective algebraic set). For any set S of polynomials in k [X1, . . . ,Xn+1], let

V (S) = {P ∈ Pn : P is a zero of each F ∈ S} .

Such a set is an algebraic set in Pn.

For any set X ⊆ Pn, let

I (X) = {F ∈ k [X1, . . . ,Xn+1] : every P ∈ x is a zero of F}

denote the ideal of X . An ideal I ⊆ k [X1, . . . ,Xn+1] is said to be homogeneous if for every

F =
m

∑
i=0

Fi ∈ I where Fi is a form of degree i we also have Fi ∈ I.

Proposition 4.1. An ideal I ⊆ k [X1, . . . ,Xn+1] is homogeneous if and only if it is generated by a finite
set of forms.

Definition 4.4 (projective variety). An algebraic set V ⊆ Pn is irreducible if it cannot be written as the
union of two smaller algebraic sets. If this is satisfied, we say that V is a projective variety.

At this juncture, to avoid confusion, we will write Vp and Ip for the projective operations and Va and Ia for
the affine ones. If V is an algebraic set in Pn, we define

C (V ) =
{
(x1, . . . ,xn+1) ∈ An+1 : [x1 : . . . : xn+1] ∈V or (x1, . . . ,xn+1) = (0, . . . ,0)

}
to be the cone over V . If V ̸= /0, then Ia (C (V )) = Ip (V ). Also, if I is a homogeneous ideal in k [X1, . . . ,Xn+1]

such that Vp (I) ̸= /0, then C (Vp (I)) =Va (I). This reduces many questions about Pn to questions about An+1.

Theorem 4.1 (Projective Nullstellensatz). Let I be a homogeneous ideal in k [X1, . . . ,Xn+1]. Then, the
following hold:

(i) Vp (I) = /0 if and only if there exists N ∈ Z such that I contains all forms of degree ≥ N
(ii) If Vp (I) ̸= /0, then Ip (Vp (I)) = Rad(I)

Proposition 4.2. Every element f ∈ Γ may be written uniquely as

f = f0 + . . .+ fm where fi is a form of degree i.

Let kh (V ) be the quotient field of Γh (V ). We call this the homogeneous function field of V . In contrast with
the case of affine varieties, no elements of Γh (V ), except the constants, determine functions on V . Likewise,
most elements of kh (V ) cannot be regarded as functions. However, if f and g are both forms in Γh (V ) of the
same degree d and g is non-zero, then f/g does define a function. In fact,

f (λx)
g(λx)

=
λ d f (x)
λ dg(X)

=
f (x)
g(x)

,

so the value of f/g is independent of the choice of homogeneous coordinates.

The function field of V , denoted by k (V ), is deifned to be

{z ∈ kh (V ) : z = f/g for some forms f ,g ∈ Γh (V ) of the same degree} .
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One can check that k (V ) is indeed a subfield of kh (V ). Also, k ⊆ k (V ) ⊆ kh (V ). Elements of k (V ) are called
rational functions on V .

We then consider An ⊆ Pn by means of the map ϕn+1 : An →Un+1 ⊆ Pn. Here, we study the relations between
the algebraic sets in An and those in Pn. Let V be an algebraic set in An and I = I(V )⊆ k[X1, . . . ,Xn] be an ideal.
Let I∗ be the ideal in k[X1, . . . ,Xn+1] generated by {F∗ : F ∈ I}. This I∗ is a homogeneous ideal; we define V ∗

to be V (I∗) ⊆ Pn. Conversely, let V be an algebraic set in Pn, and I = I(V ) ⊆ k[X1, . . . ,Xn]. Let In be the ideal
in k[X1, . . . ,Xn] generated by {F∗ : F ∈ I}. Define V∗ to be V (I∗)⊆ An.

4.3. Multiprojective Space

We wish to make the Cartesian products of two varieties into a variety. Since An ×Am may be identified
with An+m, this is not difficult for affine varieties. However, the product Pn ×Pm requires some discussion.

Write k[X ,Y ] for k[X1, . . . ,Xn+1,Y1, . . . ,Ym+1]. A polynomial F ∈ k[X ,Y ] is called a biform of bidegree (p,q) if
F is a form of degree p when considered as a polynomial in X1, . . . ,Xn+1 (make a similar claim for the Yj’s)
with coefficients in k[Y1, . . . ,Ym+1]. Every F ∈ k[X ,Y ] may be uniquely written as

F = ∑
p,q

Fp,q where Fp,q is a biform of degree (p,q).

If S is any set of biforms in k[X1, . . . ,Xn+1,Y1, . . . ,Ym+1], let

V (S) = {(x,y) ∈ Pn ×Pm : F(x,y) = 0 for all F ∈ S} .

A subset V ⊆ Pn ×Pm will be called algebraic if V =V (S) for some S. For any V ⊆ Pn ×Pm, define

I(V ) = {F ∈ k[X ,Y ] : F(x,y) = 0 for all (x,y) ∈V} .
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5. Projective Plane Curves

5.1. Linear Systems of Curves

A projective plane curve is a hypersurface in P2 except that as with affine curves, we want to allow multiple
components. We say that two non-constant forms F,G ∈ k[X ,Y,Z] are equivalent if there exists a non-zero λ ∈ k
such that G = λF . A projective plane curve is an equivalence class of forms. The degree of a curve is the degree
of a defining form. Curves of degree 1, 2, 3 and 4 are called lines, conics, cubics, and quartics respectively. The
notations and conventions regarding affine curves carry over to projective curves, thus we speak of simple and
multiple components and we write OP(F) instead of OP(V (F)) for an irreducible F .

Note that when P = [x : y : 1], then OP(F) is canonically isomorphic to O(x,y)(F∗), where F∗ = F(X ,Y,1) is
the corresponding affine curve. This makes computations more manageable by reducing to affine tools.

If P is a simple point on F , i.e. mp(F) = 1, and F is irreducible, then OP(F) is a discrete valuation ring. Let ordF
P

denote the corresponding order function on k(F). If G is a form on k[X ,Y,Z] and G∗ ∈OP(P2) is determined as
the old G∗ = G(X ,Y,1), and G∗ is the residue of G∗ in OP(F), we define ordF

P(G) to be ordF
P(G∗). Equivalently,

ordF
P(G) is the order at P of G/H, where H is any form of the same degree as G with H(P) ̸= 0.

Definition 5.1 (intersection number and tangency). Let F and G be projective plane curves and
P ∈ P2. Define the intersection number I(P,F ∩G) to be dimk(OP(P2)/(F∗,G∗)), which is independent
of the way F∗ and G∗ are formed.

We define a line L to be tangent to a curve F at P if I(P,F ∩ L) > mP(F). A point P in F is an
ordinary multiple point of F if F has mP(F) distinct tangents at P.

Example 5.1. Note that
I(P,F ∩G) = dimk

(
OP(P2)/(F∗,G∗)

)
where F∗,G∗ are the affine parts of the homogeneous forms F,G, and P = [x : y : 1] ∈ P2. Take for example a
line and a conic intersecting transversely. Let

F(X ,Y,Z) = X2 +Y 2 −Z2 and G(X ,Y,Z) = Y.

So, F denotes the unit circle and G denotes the line Y = 0. The point P = [1 : 0 : 1] corresponds to (1,0) ∈ A2.
The respective affine forms are F∗(x,y) = x2 + y2 − 1 and G∗(x,y) = y. At (1,0), we compute the intersection
number, which is

I(P,F ∩G) = dimk(O(1,0)/(x
2 −1,y)).

Here, the ideal is simplified using the relation y = 0 so the generator x2 + y2 − 1 simplifies to x2 − 1. We then
change coordinates via u = x−1 so that (1,0) 7→ (0,0). In this local ring, the ideal becomes (u2 +2u,y) so the
quotient is generated by 1,u. Hence, I(P,F ∩G) = 2. Next, since the multiplicity mP(F) = 1 and I > mP(F),
the line Y = 0 is tangent to the circle at (1,0).

Example 5.2. Recall that a line L is tangent to a curve F at P if I(P,F ∩ L) > mP(F). We consider the
interaction between a parabola and a tangent line. Let

F(X ,Y,Z) = Y Z −X2 and L(X ,Y,Z) = Y −2XZ.

Let p = [0 : 0 : 1] which corresponds to (0,0)∈A2. The affine forms are F∗(x,y) = y−x2 and G∗(x,y) = y−2x.
We compute

I(P,F ∩L) = dimk
(
O(0,0)/(y− x2,y−2x)

)
.
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Replacing both y’s with 0 yields

O(0,0)/(x
2 −2x) =O(0,0)/(x(x−2)).

In the local ring at (0,0), x(x−2) has multiplicity 2, so I(P,F ∩L) = 2. Now, mP(F) = 2 since y− x2 vanishes
to order 2 at x = 0), and I(P,F ∩L) = mP(F), so this is not a tangent line.

We often wish to study all curves of a given degree d ≥ 1. Let M1, . . . ,MN be a fixed ordering of the set
of monomials in X ,Y,Z of degree d, where N = (d+1)(d+2)

2 . Giving a curve F of degree d is the same thing
as choosing a1, . . . ,aN ∈ k, not all zero, and letting F = ∑aiMi, except that (a1, . . . ,aN) and (λa1, . . . ,λaN)

determine the same curve. In other words, each curve F of degree d corresponds to a unique point in PN−1 =

Pd(d+3)/2 and each point of Pd(d+3)/2 represents a unique curve. We often identify F with its corresponding
point in Pd(d+3)/2 and say the curves of degree d form a projective space of dimension d(d+3)

2 .

Example 5.3. If d = 1, then each line aX +bY +cZ corresponds to the point [a : b : c] ∈ P2, so the lines in P2

form a P2.

Example 5.4. If d = 2, then the conic aX2 +bXY + cXZ + eY Z + f Z2 corresponds to the point [a : b : c : d :
e : f ] ∈ P5, so the conics form a P5.

One can continue the above and deduce that the cubics form a P9 and the quartics form a P14 and so on.
If we put conditions on the set of all curves of degree d, the curves that satisfy the conditions form a subset of
Pd(d+3)/2. If this subset is a linear subvariety, then it is called a linear system of plane curves.
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